Our paper on the de novo genome sequence and annotation of the Coffee Berry Borer (a beetle) is published today in Nature Scientific Reports. This was a really fun project, where I was pushed to do a lot more in-depth study of insect biology (such as antimicrobial and cytochrome P450 proteins). We also discovered that this beetle has captured a bunch of bacterial proteins into its genome (horizontal gene transfer) - which seems odd, but was actually previously reported for this insect and many others. Interestingly, most of these captured bacterial proteins provide starch digesting enzymes, which support the beetle's lifestyle of living entirely inside of the coffee bean and eating nothing but coffee! We are of course hoping that these genes can be used as some sort of target for control of the pest, which causes something like a billion $$ of annual damage worldwide to our beloved coffee.
WCSGNet – a graph neural network approach using weighted cell-specific
networks for cell-type annotation in scRNA-seq
-
WCSGNet, developed using RNA sequencing, improves cell-type annotation in
scRNA-seq by incorporating weighted, cell-specific gene networks for more
accurat...
5 hours ago